
On Botnets that use DNS for Command and Control
Christian J. Dietrich†‡, Christian Rossow∗‡, Felix C. Freiling†,

Herbert Bos∗, Maarten van Steen∗ and Norbert Pohlmann‡

∗Computer Systems Group †Department of Computer Science
Vrije Universiteit Amsterdam Friedrich-Alexander University
Amsterdam, The Netherlands Erlangen, Germany

‡Institute for Internet Security
University of Applied Sciences Gelsenkirchen

Gelsenkirchen, Germany
Abstract

We discovered and reverse engineered Feederbot, a
botnet that uses DNS as carrier for its command and
control. Using k-Means clustering and a Euclidean Dis-
tance based classifier, we correctly classified more than
14m DNS transactions of 42,143 malware samples con-
cerning DNS-C&C usage, revealing another bot family
with DNS C&C. In addition, we correctly detected DNS
C&C in mixed office workstation network traffic.

Index Terms—malware detection; botnet detection; dns;
command and control;

I. Introduction

Botnets, i.e. sets of computers that are infected with a
specific malicious software that allows these computers
to be remote controlled, have become one of the biggest
security issues on the Internet imposing a variety of
threats to Internet users. Therefore, organizations have
keen interest to keep the number of bot infections low.
Since the remote command and control channel (C&C)
is a defining characteristic of botnets, techniques have
been developed to detect bot infections by identifying
the C&C network traffic. This has been (partly) suc-
cessful, e.g. for IRC- [1] or HTTP-based botnets [2].

Advances in malware research have challenged botnet
operators to improve the resilience of their C&C traffic.
Partly, this has been achieved by moving towards de-
centralized structures (like P2P) or by otherwise obfus-
cating and even encrypting communication [3–8]. This
makes it harder for researchers to distinguish malicious
from benign traffic, albeit not impossible. It was only
a question of time when botnet C&C channels would
be designed in a way that C&C messages are hidden in
common application layer protocols, striving for covert
communication.

Recently, we observed a specific type of malware
termed Feederbot that showed strange behavior in the
sense that it seemingly did not use any obvious C&C

channel. By reverse engineering the particular sample,
we found out that the bot (ab)used DNS as a communi-
cation channel for C&C traffic. Apart from this insight,
we were interested in the difficulties to detect this
type of seemingly “covert” and “hard to detect” traffic.
Since DNS has not been documented so far as a C&C
protocol in botnets1, such botnets benefit from the fact
that currently there is no specifically tailored detection
mechanism, which in turn raises the probability for the
botnet to remain undetected. We achieved to detect this
particular type of C&C traffic using machine learning
techniques and traffic analysis.

For example, we applied the resulting method on
purely malicious traffic produced using our dynamic
malware analysis network Sandnet [10] and found that
in over 14 million DNS transactions of over 42,000
malware binaries we did not produce any false positive.
In fact, in addition to Feederbot, we were able to
identify a second class of malware that also used DNS
as C&C channel.

One reason for our good results was the way in which
DNS was used for communication: the botnet was using
the technique of DNS tunneling to evade detection.
DNS tunneling refers to the technique in which data
is transmitted within (resource record) fields of a DNS
message. As a bottom line, our results underline that
covert communication must not necessarily be harder
to detect than non-covert communication. On the con-
trary, the covert communication we analyzed introduced
anomalies to DNS traffic that can be identified. So
the difficulty was not only to detect the presence of
C&C information in DNS, it was also to identify the
carrier (i.e. DNS) over which covert communication
takes place.

In summary, the contributions of this paper are three-
fold:

• To our knowledge, we are the first to document

1There is only anecdotal evidence for DNS as botnet C&C [9].

DNS-based botnet C&C traffic.
• We present a technique that distinguishes between

DNS-based C&C and regular DNS communication
in real-world DNS traffic. In other words, we pro-
vide a technique for the detection of this particular
class of malware.

• We present a classifier that can distinguish purely
malicious communication into DNS-based C&C
and regular DNS communication. In other words,
we provide a technique for the classification of
malware samples based on their behavior.

This paper is structured as follows: We present the
case study of Feederbot in Section II. We then describe
our detection and classification approach in Section III.
We give a brief discussion of our findings in Section IV
and describe related work in Section V.

II. Case Study: DNS as Botnet C&C

From the point of view of a botmaster, a trade-off
between C&C communication visibility and the bot-
inherent need to communicate arises. On the one hand,
bots must communicate with their C&C instance to
receive instructions and transmit data such as stolen
credentials. On the other hand, botmasters try to hide
the C&C traffic in order to avoid detection. Usually,
the design of a botnet’s C&C results in messages being
obfuscated or encrypted so that it is more difficult to
detect and understand the semantics of certain types of
C&C traffic.

A. DNS as carrier for Botnet C&C

Whereas several application layer protocols have been
analyzed by the research community concerning the
usage as a basis for botnet command and control, to
our knowledge we are the first to openly analyze the
Domain Name System protocol as carrier for botnet
C&C. DNS, when compared to other application layer
protocols provides some advantages. Concerning its
usage as botnet C&C, DNS has not been seen so far.
Thus, botnets using DNS as C&C benefit from the fact
that currently there is no specifically tailored detection
mechanism, which in turn, raises the probability for
the botnet to remain undetected. Even in environments
with heavily restricted Internet access, e.g. by means
of firewalling and proxying, DNS is usually one of the
few protocols – if not the only one – that is allowed
to pass without further ado. Furthermore, whereas for
some protocols such as HTTP, there are a number of
existing methods to analyze and inspect the network
traffic like the one presented by Perdisci et al. [2],
DNS is usually served “as is”. As another advantage,
DNS was designed as a distributed system and as such
provides advantages in terms of resilience.

Using our dynamic malware analysis environment
called Sandnet [10], we discovered a bot that indeed
uses DNS messages as carrier for command and control
traffic. As DNS is a new kind of botnet C&C, we
provide some insight into the inner workings of this
bot named Feederbot. We gained insight by reverse
engineering the Feederbot sample as well as analyzing
the network traffic that was captured during the analysis
of Feederbot in Sandnet.

Fig. 1. Example of Feederbot’s DNS Query Domain Name

Feederbot uses valid DNS syntax. Its C&C messages
consist of DNS messages with TXT resource records.
Furthermore, the query domain name is used to transmit
certain parameters from the bot to the C&C server
such as parameters for key derivation. An example of
the query domain name structure is given in Figure
1. Feederbot has to query the C&C servers directly,
bypassing the pre-configured DNS resolver on the host
because the domains that are used in Feederbot’s re-
quests are not delegated. Manual resolution of seven
domain names seen in Feederbot requests starting at
the DNS root, i.e. not querying Feederbot’s DNS C&C
servers, results in NXDOMAIN responses.

We can only speculate as to why Feederbot avoids
the pre-configured resolver and directly queries its DNS
servers. One reason could be that in this way, the
corresponding DNS C&C transactions leave no traces in
DNS resolver logs, caches or passive DNS databases. In
contrast, the fact that a different than the pre-configured
DNS resolver is used, might itself be suspicious enough
to catch one’s eye – especially in homogeneous envi-
ronments.

B. Segmentation and Encryption

Feederbot’s C&C traffic is split into message chunks
with a maximum length of 220 bytes per chunk. One
message chunk is transmitted in the rdata field of a
TXT resource record in the DNS response. The structure
of a Feederbot message chunk is shown in Figure 2.
The query domain name (Figure 1) contains among
others the identifier for the message chunk that is to
be retrieved from the C&C server.

In order to evade detection, most of the message
chunks are encrypted using the stream cipher RC4.
Feederbot uses a variety of different encryption keys. A
specific part of the DNS query domain name is used to
transmit parameters for key derivation. As an example,
one such parametrized key derivation function takes as
input a substring of the query domain name qdparam.

Fig. 2. Structure of a Feederbot DNS C&C Message Chunk

This substring qdparam is then RC4-encrypted with
the string “feedme” and the result is used to initialize
the RC4 decryption of the actual C&C message chunks.
The stream cipher is used in a stateful manner, so that
if a message chunk gets lost, decryption of subsequent
message chunks will fail. In addition, Feederbot’s C&C
message chunks make use of cyclic redundancy checks
to verify the decryption result. The CRC32 checksum
preceeds message chunk payload and is not encrypted.

Using the results from the dynamic analysis in
Sandnet as well as the reverse engineering efforts, we
achieved the implementation of a passive decryption
utility in order to decrypt Feederbot’s DNS C&C mes-
sages. Additionally, we implemented a low interaction
clone of Feederbot to actively analyze its C&C.

Feederbot receives instructions from several DNS
C&C servers. Initially, when Feederbot is launched, a
request is sent to a very small subset of C&C servers.
These servers seem to serve as bootstrapping C&C
servers. During our monitoring period of nine months,
we have seen only two such DNS servers (in terms of
IP addresses) acting as bootstrapping C&C servers. The
response to this initial bootstrapping request message is
not encrypted and only base64 encoded. It contains a
pointer to at least one other C&C server as well as
another domain name. Subsequent communication is
encrypted.

III. Detecting DNS-based Botnet C&C

When facing a new kind of botnet C&C as with Feeder-
bot, it is of concern how such a communication can
be detected. Inspired by the results of the Feederbot
analysis, we developed machine learning features for a
DNS C&C classification method.

Our classification approach is based on several pre-
requisites. First, we assume that DNS-based C&C chan-
nels typically carry dense information, such as com-
pressed or encrypted data. As botmasters strive for re-
silience, encryption is becoming more prevalent among
botnet C&C. In addition, due to the message length
limits of DNS, botmasters need to fit their commands
into relatively small messages. Second, we assume that

to a certain degree there is a continuous “downstream”
flow of information, i.e. from the C&C server to the
bot. Admittedly, this second condition may not be met
for bots with certain damage functionalities, e.g. low
profile trojans. However, we believe that lots of bots
actually fulfil this requirement, especially spam-sending
bots or click fraudsters. In these cases, the C&C server
is required to continuously provide the bot with input
data, such as spam target email addresses, templates and
text blocks or URLs to feed the click fraud module.

A. Classification Features

Key to our detection method are certain differences
between regular DNS usage and DNS C&C, which we
divide in two categories. The first category deals with
differences concerning the use of the rdata field whereas
the second category addresses differences concerning
the communication behavior.

1) Rdata Features: The basic unit for these entropy-
based features is the rdata field of all resource records
of one DNS response. For brevity, this unit is referred to
as rdata message in the following. As an example, in the
context of Feederbot this corresponds to one message
chunk. Note that we do not restrict the features to certain
resource record types or sections.

Shannon entropy is a measure of randomness in a
string of data. Given a finite alphabet Σ = {0, 1..255},
the entropy estimates how randomly the characters in
word w are distributed. We use the maximum likelihood
estimator to calculate the sample entropy of a message
w ∈ Σ∗, fi denotes the frequency of character i:

Ĥ(w) = −
255∑
i=0

fi · log2(fi)

Then, the word w1 = 001101 has a lower sample
entropy than the word w2 = 012345. We exploit the
fact that encrypted or compressed messages have a
high entropy. As we assume encrypted C&C, the C&C
messages exhibit a high entropy. Encrypted data com-
posed of characters of the full 8-bit-per-byte alphabet
will converge towards the theoretical maximum entropy
of 8 bits per byte. In this case, entropy is typically
referred to as byte entropy. In fact, when using DNS
as C&C, certain fields of the DNS protocol such as
TXT or CNAME resource records’ rdata do not allow
the full 8 bits to be used per byte. Thus, botmasters have
to “downsample” their C&C messages to the destined
alphabet, e.g. by means of Base64 or Base32 encod-
ing. This implies that the resulting message exhibits a
comparatively low byte entropy. We overcome this issue
by estimating the destined alphabet size by counting the
number of distinct characters in a given field. After that,
we calculate the expected sample entropy for random
data based on the estimated alphabet size.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 16 64 256 1024

en
tr

op
y

in
 b

its

data length in bytes

max. theoretical entropy base256
exp. random entropy base256

max. theoretical entropy base64
exp. random entropy base64

max. theoretical entropy base32
exp. random entropy base32

Fig. 3. Statistical byte entropy

Another issue is posed by the fact that short strings
of data – even when composed of random characters
– rarely reach the theoretical maximum entropy. For
example, a string of 64 bytes length, based on the 8-bit
per byte alphabet Σ has a theoretical maximum byte
entropy of 6 bits. However, considering a string r of
64 bytes length with randomly distributed bytes of the
alphabet Σ, the byte entropy is typically lower than 6
bits, e.g. around 5.8 bits. This finding is based on the
birthday paradox. Basically, encrypted data is randomly
distributed, but randomness does not imply a uniform
distribution. Thus, if a string r is short (e.g. 64 bytes),
the expected byte entropy is significantly below 8 bits,
although r might be purely random.

We overcome this issue by calculating the statistical
byte entropy for a string of a given length. This is done
as follows. Empirically, we compute the average byte
entropy of a set of x = 1, 000 random words for
every length 1 < N < 210. For any word w1, . . . , wx,
we compose a random byte distribution and calculate
the byte entropy. Since x was chosen sufficiently large,
calculating the mean over all x byte entropies of words
with length N estimates the expected statistical byte
entropy of random data of length N . Figure 3 shows
the maximum theoretical entropy and the expected
statistical random entropy for the full 8-bit per byte
alphabet Σ as well as typical Base64 and Base32
alphabets. One important feature is the deviation of the
actual sample entropy to the expected statistical random
entropy. Effectively, this covers different alphabets in
a flexible fashion, i.e. we can dynamically detect high
sample entropies in data encoded with any alphabet such
as Base64, Base32, Base16 or the like.

In addition, we measure the minimum and maximum
byte values of a given rdata message as well as the
coverage of some subsets of the ASCII character set

such as capital letters and digits. The complete list of
features for an rdata message m consists of:

• number of distinct byte values in m
• minimum byte value in m
• maximum byte value in m
• number of ASCII capital letters (byte values 65-90)

in m
• number of ASCII digits (byte values 48-57) in m
• length of m in bytes
• absolute difference of the statistical byte entropy

at given length of m and the entropy of m
2) Aggregated Behavioral Communication Features:

Furthermore, we exploit behavioral properties of DNS
C&C bots. These features address the fact that a cer-
tain amount of information has to be transmitted via
the DNS C&C channel, e.g. spam templates, email
addresses or click fraud URLs, and that the C&C chan-
nel exhibits a certain level of persistence. In contrast
to the rdata features, the behavioral communication
features do not operate on individual DNS response
resource records. Instead, they operate on aggregated
data. Thus, for the behavioral communication features to
be computed, we need to define aggregation criteria, so
that communication properties can be aggregated over
time before calculating the features. When analyzing
Feederbot, we observed that the DNS C&C servers
were contacted directly, avoiding the pre-configured
DNS resolver. In this case, in order to compute be-
havioral communication features (e.g. bandwidth), the
requester’s IP address as well as the IP address of the
DNS server serve as aggregation criteria. In contrast,
if DNS requests are directed towards pre-configured
DNS resolvers, the requester’s IP address and the query
domain name (and parts thereof such as the second-level
domain) are used as aggregation criteria. In both cases,
we assume that the requester’s IP address represents
one host, i.e. no network address translation has been
performed. Note that even if network address translation
was performed, detecting that DNS C&C was used
might still be possible. However, in such a case, it would
be impossible to identify the infected host.

We define the following behavioral communication
features. First, we measure the size of all rdata messages
(i.e. rdata fields of DNS response resource records)
and compute the corresponding aggregated bandwidth
over time. We expect that the data volume transmitted
between the DNS C&C server and the bot will tend to
be significantly larger when compared to regular DNS
usage, as DNS is typically not used for data transmis-
sion. This observation results in either larger messages
and/or in an increased bandwidth consumption between
the bot and the C&C server.

Second, the information flow between one bot in-
stance and the C&C server is expected to appear more

persistent. We measure the persistence as the maximum
of the time between two DNS responses, as well as
the communication duration calculated as the time be-
tween the first and the last message exchanged with
a C&C server. Yet simple, we expect these behavioral
communication features to be effective enough in order
to extend a classifier based on the rdata features.

B. Clustering DNS traffic

Given these features, our goal is to develop a binary
classifier that is able to detect DNS-C&C traffic. Before
we can classify DNS traffic, we need to extract two sets
of training data. As a first step, we extract two different
kinds of DNS traffic. We define one transaction to be
composed of one DNS request as well as the corre-
sponding DNS response. Based on the network traffic
caused by the Feederbot execution that we analyzed in
Section II, we compile a set of known Feederbot DNS
C&C transactions. This set is referred to as DD and
contains 3128 DNS transactions. DD is composed of
DNS transactions fulfilling both of the following two
conditions:

• The transaction was directed to any of the DNS
bootstrapping C&C servers which were verified to
be used as C&C during reverse engineering.

• The request has a query domain name ending in
one of 7 second-level domains observed during
dynamic execution analysis.

Furthermore, we extract DN , a set of DNS transac-
tions of 30 executions of bots that knowingly do not
use DNS as C&C. In addition, we manually inspected
500 (1%) of the 47,433 DNS transaction of DN . DN

contains DNS transactions that occurred as part of the
damage functionality of these bots such as spamming
or click fraud. The complete list of bot families used to
compile DN is given in Table I. The bot family names
are based on a majority voting of up to 43 labels per
sample.

Bot Family Type of C&C # Execs DNS TXs

unknown HTTP 3 620
unknown IRC 4 1951
agobot IRC 1 163
koobface HTTP 2 4119
rbot IRC 2 300
sality Custom P2P 4 5718
sdbot IRC 3 916
swizzor IRC 1 93
virut IRC+CE 4 17,740
virut IRC (plaintext) 4 15,789
zbot HTTP+CE 2 24

TABLE I
BOT EXECUTIONS USED TO ACQUIRE NON-DNS-C&C

TRANSACTIONS. CE=CUSTOM ENCRYPTION

With respect to approximately equally sized training
sets, the next step consists in drawing 5000 elements of
DN at random into DNS so that the resulting set DNS

has approximately the same size as DD. We compose
the set D := DD∪DNS as the union of DD and DNS .

At this point, we extract the rdata features described
in Section III-A1 from all DNS transactions in D. The
resulting set of feature vectors is referred to as F .
Moreover, the elements of F are normalized and the
normalization parameters are stored. Using k-Means
clustering with k = 2 and Euclidean Distance function,
we separated F into two clusters CD and CN . The
cluster which contains the most known DNS C&C
elements is considered as CD, the other one as CN .

The clustering step aims at distilling the characteristic
transactions for DNS C&C into the resulting cluster
CD. Table II, the classes to clusters comparison shows
that only 6 elements of DD were assigned to cluster
CN . Manual inspection revealed that each of these 6
transactions carries a Feederbot C&C message chunk
with an empty payload. Thus, these are not considered
as characteristic C&C messages. All of the transactions
in the Non-DNS-C&C set DNS were assigned to the
Non-DNS-C&C cluster CN .

CN CD

DNS 5000 0
DD 6 3122

TABLE II
CLASSES TO CLUSTERS COMPARISON

Based on the clustering results, we develop a classi-
fication method. First, we aim at classifying malicious
network traffic, i.e. network traffic caused by malware
as it is acquired in Sandnet. This binary DNS traffic
classifier is supposed to distinguish between DNS-based
C&C and Non-C&C in order to find other malware
executions that exhibit DNS C&C. Second, we aim at
detecting DNS-based C&C channels in real-world DNS
traffic.

C. Detecting Bots that use DNS C&C

As we were curious to find further malware samples
using DNS C&C – apart from the Feederbot sample
and its execution that we analyzed in depth in Section
II – we designed a DNS C&C classifier that can be
applied to the network traffic gained by our Sandnet
analysis of more than 100,000 malware samples [10].
Due to the enormous amount of data and because we
wanted to identify individual DNS C&C transactions,
we intentionally restrict ourselves to the rdata features
as described in Section III-A1. Therefore, we calculate
the rdata features for the 14,541,721 DNS transactions

of all 42,143 samples that have been executed in Sand-
net and that exhibited DNS traffic. Each feature vector
reflects one DNS transaction.

In order to classify DNS traffic, we calculate the
mean cluster centroids of both clusters CD and CN built
in Section III-B. Each feature vector is scaled using
the normalization parameters from the training phase.
Finally, as classification method, we implemented a
Euclidean Distance based classifier which assigns the
class of the closest cluster to the given feature vector.

All in all, 109,412 DNS transactions of Sandnet
traffic are classified as DNS C&C. This procedure
reveals 103 further executions of Feederbot samples.
Surprisingly, our classification even discovers another
bot family that uses DNS-based C&C. We term this
newly found bot Timestamper due to the fact that it
uses the Unix timestamp of the current date and time
in the query domain name. Timestamper, in contrast
to Feederbot, uses the preconfigured DNS resolver.
Our classifier detects 53 executions of Timestamper in
Sandnet data. Manual inspection verifies that all of the
156 executions which have associated DNS transac-
tions classified as DNS C&C are either Feederbot or
Timestamper executions. Thus, at this point, we draw
the conclusion that, in terms of Sandnet executions, our
classifier does not produce any false positive.

As part of an effort to estimate the False Negative
rate, we compile a regular expression for Timestamper’s
DNS C&C requests that matches the Unix timestamp
in the query domain name. 1679 transactions where
the regular expression matches the query domain name
are considered as Timestamper’s DNS C&C requests,
the remaining 1851 DNS transactions are considered as
Non-C&C DNS. Our classifier correctly classifies all of
the 1679 transactions as being DNS C&C transactions,
i.e. showing no false negatives among Timestamper’s
DNS C&C traffic.

In addition, we evaluate our classifier against 1851
Timestamper DNS transactions which are not part of its
DNS C&C in order to estimate the False Positive rate on
the transaction level. Once more, our classifier correctly
considers all of these 1851 transactions as not being
DNS C&C transactions, i.e. showing no false positive
among the Timestamper DNS transactions.

To summarize, our binary DNS C&C transaction
classifier successfully reveals 103 further executions of
Feederbot and discloses 53 executions of Timestamper,
the newly disclosed bot that also uses DNS C&C. In
addition, the results show that even though we trained
only on known Feederbot DNS C&C of one execution,
our classifier was able to correctly classify DNS C&C
transactions of another, completely unrelated type of
malware.

D. Detecting DNS C&C in mixed traffic

Furthermore, we evaluate our classifier on mixed
workstation DNS traffic. Therefore, we recorded
DNS network traffic at our Institute at the network
router/NATting point where all traffic from workstations
towards internal servers as well as arbitrary Internet
destinations passes. Traffic from the internal servers
heading for Internet destinations was excluded in order
for recursive DNS queries caused by the DNS resolver
to be avoided. All DNS traffic was recorded before
source network address translation (NAT) on the router
was applied. In this manner, we are able to capture DNS
traffic destined for the pre-configured DNS resolver and
for remote DNS resolvers on the Internet.

Additionally, we executed one Feederbot sample and
one Timestamper sample from inside the workstation
net, each for one hour. Both samples were executed in
virtual machines on workstation computers that were
used for regular operation throughout the whole measur-
ing period. The network access of the virtual machines
was configured to use NAT on the workstation hosts.
Thus, the traffic originating in each infected virtual
machine and the corresponding workstation host traf-
fic cannot be distinguished by source IP address and
regarding our aggregation they represent one entity.
Additionally, all network traffic caused by the virtual
machines was recorded individually on the workstation
host. Our goal is to detect those workstations that
executed the Feederbot and Timestamper samples.

The captured network traffic contains a total of
69,820 successful DNS transactions from 49 distinct
workstation IP addresses of our Institute, captured be-
tween 7 a.m. and 8 p.m. on a regular weekday. This
dataset is referred to as Tall. The Feederbot VM caused
a total of 2814 DNS transactions (TF) among which
1092 were DNS C&C transactions (TFCnC). Addition-
ally, we observed 4334 HTTP flows during its click
fraud activity. The network trace of the VM executing
the Timestamp bot showed a total of 181 DNS transac-
tions (TT) with 102 DNS C&C transactions (TTCnC).
Consequently, the traffic capture contains 66,825 DNS
transactions caused by the legitimate workstations dur-
ing regular operation.

In order to make use of the aggregated behavioral
communication features, we extended our classification
method. Based on the results in Section III-C, we
compiled a set of 10 Feederbot executions revealed in
Section III-C. For these executions, we calculated the
following three thresholds:

1) tb the mean bandwidth per aggregate
2) tmi the mean of the maxima of the gaps between

two consecutive C&C messages for DNS C&C
flows

3) tsi the standard deviation of the maxima of the
gaps between two consecutive C&C messages for
DNS C&C flows

As a first step, we applied the classifier presented in
Section III-C to all of the DNS transactions in Tall. This
results in the set of candidate DNS C&C transactions
Tcand. Furthermore, in order to apply the behavioral
communication features, we computed two kinds of
aggregates for the candidate transactions in Tcand. First,
we aggregate by each pair of source and destination IP
addresses. Second, we aggregate by each pair of source
IP address and second level domain of the query domain
name.

Subsequently, the set of aggregates is filtered, elim-
inating all aggregates that do not fulfil the behavioral
properties. We exclude aggregates with a computed
bandwidth smaller than tb and a maximum time between
two C&C messages greater than d ·tsi+tmi with d = 3.
This filtering step makes sure that only those channels
with persistence be considered as C&C channels. None
of the aggregates were excluded in the filtering step.

Based on the resulting set of aggregates, we consider
each source IP address to be infected with malware us-
ing DNS C&C. Indeed, only the two IP addresses of the
workstations that hosted the Feederbot and Timestamper
bots were classified as DNS C&C infected hosts. To sum
up, we showed that our classifier can even detect DNS
C&C transactions in mixed network traffic of regular
workstations.

IV. Discussion

Though achieving high true positive rates, there are
certain limitations that bots could exploit to evade our
detection. One such limitation is posed by the fact
that botmasters could restrict their C&C messages to
very small sizes. In practice, message contents could
be stored in e.g. 4 bytes of an A resource record’s
rdata. In this case, our rdata features alone, which are
currently applied to individual C&C messages, would
not be able to detect these C&C messages as high
entropy messages because the statistical byte entropy
of really short messages is very low and our estimate
of the alphabet size by counting the number of distinct
bytes is inaccurate for short messages.

In this case, a countermeasure could be to aggregate
several messages and compute aggregated rdata fea-
tures. Furthermore, for each aggregate, the change of
entropy among subsequent messages can be measured.
Additionally, for certain resource records one could
compare the distribution of byte values against the
expected distribution. For example, the rdata of an A
resource record contains IPv4 addresses. However, the

IPv4 address space is not uniformly distributed. Instead,
certain IPv4 address ranges remain reserved, e.g. for
private use such as 10.0.0.0/8 (RFC1918) or 224.0.0.0/4
for multicast. These might rarely show up in Internet
DNS traffic whereas other addresses, e.g. popular web
sites, might appear more often in DNS query results.

When looking at Feederbot, it becomes obvious that
the query domain name can be chosen completely
at random. In general, this is true for botnets where
the DNS C&C servers are contacted directly. In order
to avoid raising suspicion, the botmasters could have
chosen e.g. random or even popular second-level do-
mains. This would become a problem for our detection
mechanism if only the query domain name was used
for aggregation alone. However, as we also aggregate
by the DNS server’s IP address, our classifier can still
detect this kind of DNS C&C. As a result, we suggest to
aggregate by at least both, the DNS server’s IP address
and the query domain name, because the botmaster can
only arbitrarily change one of them.

Another limitation is posed by the fact that our
behavioral communication features aim at botnets with
a central C&C architecture using a limited set of C&C
servers. Botmasters might exploit this by spreading the
communication with C&C servers over lots of different
C&C destinations so that even the aggregated behav-
ioral features such as the aggregated bandwidth remain
subliminal. Effectively, a further step in this direction
would be to change for a peer-to-peer C&C architecture
where each bot is part of the peer-to-peer network.
However, this opens the door for a whole variety of
techniques addressing peer-to-peer networks such as
eclipse attacks.

V. Related Work

Related work can be grouped in three categories. First,
several C&C techniques of botnets have been analyzed
in depth [3–5, 7, 11]. For example, Holz et al. [5]
provide insights into botnets with peer-to-peer C&C
architecture in a case study on the storm worm. Stock
et al. and Calvet et al. [3, 11] analyze the Waledac peer-
to-peer botnet in detail. However, to our knowledge, we
are the first to analyze DNS as carrier for botnet C&C.
Our work depicts how C&C messages are structured,
encrypted and encoded in regular DNS syntax as is
the case with Feederbot, a bot using DNS C&C we
discovered during this work. Additionally, we discuss
general architectural issues and limitations of DNS
botnet C&C. The second group of related work contains
approaches to detect botnets in network traffic. This
kind of related work can be separated into application
protocol specific approaches and protocol independent
approaches. As HTTP is used as botnet C&C, some

work has been done to develop specifically tailored
detection methods for HTTP-based botnet C&C, such as
Perdisci et al. [2]. Goebel and Holz [1] present methods
in order to detect IRC-based botnets. However, due
to their protocol-dependent orientation, none of these
approaches are able to detect DNS C&C.

Independent of the application layer protocol, Gu
[12] and Strayer [13] propose botnet detection meth-
ods based on network flow characteristics. However,
protocol-independent approaches will likely fail to de-
tect DNS C&C as they expose neither chat-style char-
acteristics nor necessarily spatial-temporal correlated
behavior. For example, Feederbot does neither exhibit
periodicity nor synchronized transactions among differ-
ent bot executions – effectively exploiting the gap of
existing detection approaches. Therefore, we provide
a detection method specifically tailored to DNS C&C
based on rdata and behavioral communication features
– successfully filling this gap.

A special case is the work of Choi et al. [14],
which – though not specifically targeting DNS C&C
– addresses group activities in DNS. The authors define
differences between DNS query behavior typical to any
kind of botnet and legitimate DNS resolution. Accord-
ing to Choi et al., key features for bot-typical behavior
include simultaneous DNS queries, quickly changing
C&C server addresses as well as transient domains.
However, as our analysis of Feederbot discovers, none
of these assumptions hold. Feederbot’s C&C servers
stayed up for the whole monitoring period of nine
months and DNS queries are not synchronized between
different bots. Instead, we exploit rdata features and
persistent communication behavior to detect DNS C&C.

The third group of related work covers DNS
covert communication. Bernat [15] analyzed DNS as
covert storage and communication medium. Born and
Gustafson [16] employ character frequency analysis in
order to detect DNS tunnels. However, both approaches
do not specifically address the detectability of DNS
as botnet C&C. In addition, we significantly improve
entropy-based features and combine them with behav-
ioral features to target botnets.

VI. Conclusion

Inspired by anomalous DNS behavior, we stepped into
a whole new kind of botnet C&C. This shows that even
though many bot families use IRC or HTTP C&C, mal-
ware authors still find new ways of instructing their bots.
It is obvious that DNS C&C moves botnet C&C one
step further into the direction of covert communication.
The detection of such botnet C&C even when covert,
remains possible.

We combine protocol-aware information theoretical
features with aggregated behavioral communication fea-
tures and apply them at different levels of network traffic
abstraction, i.e. DNS transactions and hosts. In this
way, we detect DNS C&C in real-world DNS traffic.
Furthermore, we provide means to classify malware
concerning DNS C&C usage based on network traffic.

To summarize, to the best of our knowledge we are
the first to not only describe a real-world botnet using
DNS C&C, but also provide a mechanism to detect DNS
C&C in network traffic.

Acknowledgements

We thank the anonymous reviewers and our shepherd
Dieter Gollmann for many helpful comments. This work
was supported by the Federal Ministry of Education and
Research (Grant 01BY1110, MoBE).

References

[1] J. Goebel and T. Holz, “Rishi: Identify Bot Contaminated Hosts
by IRC Nickname Evaluation,” in USENIX HotBots, 2007.

[2] R. Perdisci, W. Lee, and N. Feamster, “Behavioral Clustering
of HTTP-Based Malware and Signature Generation Using Ma-
licious Network Traces,” in NSDI, 2010.

[3] B. Stock, M. Engelberth, F. C. Freiling, and T. Holz, “Walowdac
Analysis of a Peer-to-Peer Botnet,” in EC2ND, 2009.

[4] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet
is My Botnet: Analysis of a Botnet Takeover,” in CCS, 2009.

[5] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling,
“Measurements and Mitigation of Peer-to-Peer-based Botnets:
A Case Study on Storm Worm,” in USENIX LEET, 2008.

[6] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A
View on Current Malware Behaviors,” in USENIX LEET, 2009.

[7] K. Chiang and L. Lloyd, “A Case Study of the Rustock Rootkit
and Spam Bot,” in HotBots, 2007.

[8] G. Gu, V. Yegneswaran, P. A. Porras, J. Stoll, and W. Lee,
“Active botnet probing to identify obscure command and control
channels,” in ACSAC. IEEE Computer Society, 2009.

[9] S. Bromberger, “DNS as a Covert Channel Within Protected Net-
works,” http://www.oe.energy.gov/DocumentsandMedia/DNS
Exfiltration 2011-01-01 v1.1.pdf.

[10] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. van Steen,
F. C. Freiling, and N. Pohlmann, “Sandnet: Network traffic
analysis of malicious software,” in Building Analysis Datasets
and Gathering Experience Returns for Security, 2011.

[11] C. R. D. Joan Calvet and P.-M. Bureau, “Malware Authors Don’t
Learn and That’s Good!” in MALWARE, 2009.

[12] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clus-
tering analysis of network traffic for protocol- and structure-
independent botnet detection,” in USENIX Security, 2008.

[13] W. T. Strayer, D. E. Lapsley, R. Walsh, and C. Livadas, “Botnet
detection based on network behavior,” in Botnet Detection,
ser. Advances in Information Security, W. Lee, C. Wang, and
D. Dagon, Eds. Springer, 2008, vol. 36, pp. 1–24.

[14] H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet detection by
monitoring group activities in DNS traffic,” in CIT, 2007.

[15] D. Bernát, “Domain name system as a memory and communi-
cation medium,” in SOFSEM, 2008.

[16] K. Born and D. Gustafson, “Detecting DNS Tunnels Using
Character Frequency Analysis,” http://arxiv.org/ftp/arxiv/papers/
1004/1004.4358.pdf.

